
 Exercises for seminar week 41  
 
Supplementary exercise 4 (read the introduction below) 
Rice, chapter 4:  No. 69,  75,  76,  77,  79, 94  
(For 94 read section 4.6 in Rice and (A4-5) in appendix 1 in “Lecture notes to Rice 
chapter 5” on the net.) 
 
Hint for ex 4.79:   Remember the sum of a geometric series:  
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A common factor in such a series can be taken outside the sum as for finite sums: 
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Introduction to supplementary exercise 4 
 
Assume ~ ( , ).X α λΓ  In the exercise (and elsewhere in the course) we need a formula for 
E( )rX  where r is any real number such that r > 0:  The density for X is 
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The task becomes easy when we remember that 
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, 0α λ > . (Note that the integral from −∞  to 0 is equal to 0 here). We find 
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By multiplying and dividing by the same constant, we can write the integral as an integral 
of a pdf  (i.e. the pdf of ( ,r )α λΓ + ), which has value 1: 
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